Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros


Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Naunyn Schmiedebergs Arch Pharmacol ; 395(12): 1509-1523, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36125533

RESUMO

The 4,4'-diaminodiphenyl sulfone (DDS), also known as dapsone, is traditionally used as a potent anti-bacterial agent in clinical management of leprosy. For decades, dapsone has been among the first-line medications used in multidrug treatment of leprosy recommended by the World Health Organization (WHO). Shortly after dapsone's discovery as an antibiotic in 1937, the dual function of dapsone (anti-microbial and anti-inflammatory) was elucidated. Dapsone exerts its anti-bacterial effects by inhibiting dihydrofolic acid synthesis, leading to inhibition of bacterial growth, while its anti-inflammatory properties are triggered by inhibiting reactive oxygen species (ROS) production, reducing the effect of eosinophil peroxidase on mast cells and downregulating neutrophil-mediated inflammatory responses. Among the leading mechanisms associated with its anti-microbial/anti-protozoal effects, dapsone clearly has multiple antioxidant, anti-inflammatory, and anti-apoptotic functions. In this regard, it has been described in treating a wide variety of inflammatory and infectious skin conditions. Previous reports have explored different molecular targets for dapsone and provided insight into the anti-inflammatory mechanism of dapsone. This article reviews several basic, experimental, and clinical approaches on anti-inflammatory effect of dapsone.


Assuntos
Dapsona , Hanseníase , Humanos , Dapsona/farmacologia , Dapsona/uso terapêutico , Hanseníase/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antioxidantes/uso terapêutico , Espécies Reativas de Oxigênio
2.
Cancer Chemother Pharmacol ; 85(3): 563-571, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31915967

RESUMO

PURPOSE: It has been supposed that cardiac toxicity of doxorubicin is due to its production of free radicals and inflammatory cytokines. Dapsone, an antibiotic drug which is the principal in a multidrug regimen for the treatment of leprosy, is a sulfone with anti-inflammatory and antioxidant immunosuppressive properties. Therefore, we designed this study to investigate the possible effects of dapsone on doxorubicin-induced cardiotoxicity. METHODS: Male rats were administrated doxorubicin (2.5 mg/kg) and dapsone (1, 3, 10 mg/kg) intraperitoneally six times in 2 weeks. Then electrocardiographic (ECG) parameters (QRS complexes, RR and QT intervals) alternation, papillary muscle contraction and excitation, and histopathological changes were assessed. Also, the heart tissue levels of malondialdehyde (MDA) as oxidant factor and superoxide dismutase (SOD) as antioxidant enzyme, tumor necrosis factor-alpha (TNF-α) and serum level of CK-MB were analyzed. RESULTS: Administration of dapsone with doxorubicin significantly reversed alterations induced by doxorubicin in serum levels of CK-MB, ECG parameters, papillary muscle contractility and excitation. Furthermore, the measurement of MDA, SOD and TNF-α tissue level indicated that dapsone significantly reduced oxidative stress and inflammation. These findings were consistent with histopathological analysis. CONCLUSION: Dapsone exerts cardioprotective effects on doxorubicin-induced cardiotoxicity through its anti-inflammatory and antioxidant mechanism.


Assuntos
Cardiotoxicidade/tratamento farmacológico , Dapsona/farmacologia , Doxorrubicina/efeitos adversos , Coração/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Cardiotoxicidade/metabolismo , Citocinas/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo , Masculino , Malondialdeído/metabolismo , Miocárdio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA